Meditations of an oncology geek

Archive for September, 2011

How bad is red meat?

without comments

This week’s article was inspired by Calvin Sloan of Santa Monica, CA:

What should I not eat, what is the most carcinogenic? [in the common American diet] Also, does eating burnt toast actually lead to stomach cancer?

I am still gathering information on burnt toast, but the LA Times recently put out a decent article on charred / heavily cooked meat and cancer risk

Unlike most scientific “journalism” online, Elena Conis did a good job interviewing real scientists and doing decent footwork to include large-scale studies.

It has been known for a long time that meat cooked at high temperatures contain a class of compounds called heterocyclic amines (HCA’s) that have been strongly causative of DNA damage in test tubes, and caused cancer in rats, mice, and monkeys. There are several large-scale studies that link red meat consumption, especially charred meat consumption, to an increase in risk for colon, pancreatic, and prostate cancer.

But, these links are not as strong as, say, smoking to lung cancer, and the increase in cancer risk is ~10-20% for most of the studies. That does not mean it is not important.

Given the evidence, experimental and correlative, I have personally chosen to eat less red meat. (I have ecological reasons as well, but that is beyond the scope of this blog) I also encourage those around me to eat less red meat as well. Especially charred or burnt meat.

happy tofu and quinoa!
-Ryon

Written by Ryon

September 25th, 2011 at 4:00 pm

Posted in Science Blog

Who was Jonas Salk? How does one contribute to medicine?

without comments

Yesterday I attended the 23rd Usha Mahajani symposium on cancer research at the Salk Institute.

I wish I could spend more time this week writing about the cool research presented on cancer stem cells, but unfortunately I am a bit preoccupied with preparing a presentation on my research that will determine if I advance to candidacy for my PhD!

For now, dear reader, I leave you with this photo I took on the inside of the Hoffman Auditorium (quite possibly my favorite auditorium anywhere). It’s a quote by Jonas Salk, who created the first vaccine for polio, and for whom the world-famous research institute was named after.

I find it fairly apt for the audience of this blog. The health and wellness of humanity is not the responsibility of scientists and doctors. We all have a stake and a shared responsibility. And, just because one is not formally trained in science does not prohibit one from thinking and coming up with ideas.

As far as I am concerned, the only dumb questions are the ones that are not voiced.

-Ryon

Written by Ryon

September 17th, 2011 at 9:19 am

Posted in Science Blog

Post-9/11 cancer?

without comments

11 September 2011

It’s the 10th anniversary of the September 11th terrorist attacks, and when the World Trade Center towers went down, a very large dust plume came up. That dust contained a large amount of asbestos, a highly carcinogenic substance for those exposed to it via inhalation. Survivors of the terrorist attacks on September 11th 2001 will be at risk for development of what is usually a rare form of cancer in the years and decades to come.

Mesothelioma is a rare form of cancer that arises from the lining of the lung, the mesothelium, which forms the outer boundary of the lung and separates the lung from the rest of the thoracic cavity.

Mesothelioma is HIGHLY associated with exposure to asbestos, which has been in wide use as an insulator and flame retardant since the 1940′s. As with most types of cancer that have a strong link to environmental stimuli (lung cancer and smoking, for instance), there is a lag time of a decade or more until onset of disease. The epidemiological data (correlation) and biochemical / experimental data (causation) for the link between asbestos exposure and mesothelioma is exceptionally strong. (1)

Asbestos contains many small fibers that are not able to be broken down by the immune system. The current model for how mesothelioma arises from asbestos is that local inflammation in response to the fibers causes sustained oxidative stress of the local tissues, over time giving rise to tumors. Mesothelioma might also directly bind and damage DNA. (2)

As with most types of cancer, catching the disease in its early phases can greatly enhance survival. If you or someone you know has been exposed to asbestos, talking to a medical doctor about it can both help identify symptoms and alleviate mental stress and anxiety.

Ryon

References:
1) http://www.ncbi.nlm.nih.gov/pubmed/20021458
2) http://www.ncbi.nlm.nih.gov/pubmed/20068227

Written by Ryon

September 11th, 2011 at 1:52 pm

Posted in Science Blog

What do cancer researchers do all day?

with 3 comments

3 September 2011

This week’s question is from Andrew Danly of Point Loma, CA.

Hey Ryon:

What is it you do in the lab on the front lines of the battle to cure cancer? Are you looking at “switches”, testing magic bullets, growing or killing things? How do you measure progress? Do you move forward in increments or are you looking for a home run? What’s in your beaker right now? Ever had an innovative idea outside the lab that you put into play? If so, elaborate.

I love it! The reader turns the spotlight back on the writer!

I remember how before I started cancer research the whole process of actually doing science was very foreign to me. For most people, their exposure to science is limited to a dry book of “facts” and things to memorize. Their stereotype of a scientist is a socially awkward white male that wears thick glasses, stumbles over things but somehow has no problem running many bubbling liquids of different colors in glassware connected by an elaborate maze of plastic tubes. If only there was some way I could dispel those impressions…


I was inspired to take a self-portrait for this article.

Ok, so maybe I often do wear that white labcoat, but this is actually how I would look when I get an experiment to work. In this instance, I am holding up what is called a western blot of a protein binding array. After months of cutting and pasting sequences of DNA, tricking bacteria to make my protein, purifying the protein, modifying the protein with enzymes, I was able to get an important anti-cancer protein to bind and may have figured out a new drug target or two. Cool. You’d look amazed too!

Now, on to your questions…

What is it you do in the lab on the front lines of the battle to cure cancer?

I could seriously write a book about what I do. As a matter of fact, that’s basically what I am doing. I am a PhD student, and the sum of my work will be compiled into a thesis that can be anywhere from 100 to 500 pages.

On a daily basis, I do anything from cutting and pasting together sequences of DNA, purifying specific proteins from bacteria, dissecting mice, growing human cancer cells in petri dishes, and I wash it all down with plenty of reading in scientific journals and the occasional blog post.

My central project is investigating the biochemical processes that allow cancer cells to spread through the body and metastasize (see hallmarks of cancer article). The majority of cancer deaths (and the horrible progression of the disease) is caused by the spread of cancer cells that preludes the growth of new tumors in distant organs. Using some old school biochemistry and DNA engineering combined with new school genetically altered mice, we have developed models that have lead to a better understanding of this process. We are expanding knowledge in this realm because it is very amendable to therapeutic intervention. If one is able to stop cancer spread, cancer becomes a manageable disease, not a death sentence.

Are you looking at “switches”, testing magic bullets, growing or killing things?

I guess one could say that we do a bit of all of the aforementioned. Our lab is trying to figure out how to switch cancer cells back to be able to commit cell suicide. There are hundreds of tissue types in the body with thousands of cell types and trillions of cells. For the vast majority of tissues, if a cell leaves its cozy microenvironment that it is used to, it commits cell suicide and kills itself to maintain the proper order of things. Cancer cells do not. This is partly why cancer is such a difficult problem. The immune system still recognizes tumors as “self” and not “foreign.”

What is interesting is that often cancer cells of many cancer types will still maintain the self-destruct switch, but it’s hidden in a room deep in an underground lair surrounded by a moat filled with sharks with laser beams attached to their heads. But, there must ways to get to that switch, and every little experiment we do is one more piece to the biggest jigsaw puzzle you’ve ever seen.

Do you move forward in increments or are you looking for a home run?

Steven Wright once said: “To steal ideas from one person is plagiarism. To steal from many is research.” While we do not necessarily steal ideas, almost all of our experiments and every little piece of that giant jigsaw puzzle could not make sense without the pieces put into place by others. In that regard, we do not swing for the fences. We do not just randomly give dying cancer patients exotic extracts from deep corners of the Amazon; we would take the extracts by screening them with biochemical tests we develop in test tubes to identify good candidates. Then we would move on to petri dishes with cancer cells, then in mice that get cancer, and if all that works something might move into the clinic.

Image: each little off-white dot is a bacterial colony that harbors a cloned gene.

What’s in your beaker right now?

This very moment? I’ve currently got a small mix of bacteria that I purposefully grew into a culture, tricked them into making a specific protein that I engineered, and am now treating with bleach to kill of any remaining bacteria that I did not leach the engineered protein from. In reality, the bacteria that I am using are so harmless that it would almost certainly not grow outside of the lab and I could probably just dump it down the drain without any real problems. But, we extra-kill it just to make overactive safety zealots sleep better at night.

Have you ever had an innovative idea outside the lab that you put into play? If so, elaborate.

The true mark of a scientist is not memorizing encyclopedias of “knowledge” or getting complicated experimental procedures to work, but asking good questions. Scientists are generally very curious people that are always thinking about the problems they tackle and the projects they work on. I spend a lot of time outside of lab riding my bike. I ride it fast, I ride it slow, I ride it up and down hills and mountains, by ocean and even to work!

During that time I often let my mind wonder, and some of my most innovative ideas have come while out and about. I realize that this sounds more like an artist than a “scientist,” but at the core of scientific progress is curiosity and creativity. Visualizing is an indispensable part of any creative endeavor, and I’ve made major mental breakthroughs while not in lab. Science is a way of life, a philosophy unto itself, and I really wish I could share those experiences with everyone.

The End…. ?

This was a fun topic. If you have more questions like this, dear reader, I would be more than happy to give you insights into what myself and other active scientists do.

Ryon

Written by Ryon

September 2nd, 2011 at 12:22 pm

Posted in Science Blog